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ABSTRACT 

and Technology Branch to enable researchers in the Intelligent Systems Research Laboratory 
to perform experiments in teleoperator and automated remote space operations. This end-ef- 
fector, a parallel jaw gripper, has proximity and crossfire sensors for the detection of work- 
pieces, limit and overload sensors, and manually-exchangeable fingers. The Branch has re- 
searched several variations of this end-effector, including finger-mounted force/ torque 
sensors, automatically exchangeable ratcheting tools, and several task-specific gripper 
styles. 

A microprocessor controller has been developed for this end-effector, with a 
sophisticated monitor to examine and change gains, speeds, and sensor values, ahd to move 
the grippers. This controller has been interfaced into the Teleoperator and Robotic Testbed to 
provide automated gripping and gripper-based sensing to the Telerobotic System Simulation 
currently in use in the ISRL. Four end-effector/sensor systems have becn fabricated and are 
currently used in various configurations in the ISRL. 

A robotic end-effector/sensor system has been developed and tested in the Automation 
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between the controller program and the ISRL TRSS (TeleRobotic System 
Simulation) were developed by Bill Bynum and improved by Frank 
Willard. Bob Glover provided considerable assistance in installing the 
FORTRAN interface for the end-effector program into the TRSS system. 

INTRODUCTION 
The Automation Technology Branch of NASA Langley Research 

Center has been researching automation and robotic techniques for space 
operations since 1979. This branch has developed and currently maintains 
the Intelligent Systems Research Lab. The lab houses a collection of 
computers and robotic peripherals that have been organized into a 
simulation testbed for telerobotic research. This testbed is being used to 
investigate and develop techniques for telerobotic on-orbit operations, such 
as assembly of large space structures and servicing and repair of spacecraft. 

The parallel jaw end-effectors being used with the robotic 
manipulators in the Intelligent Systems Research Lab were fabricated at 
Langley from designs by the University of Rhode Island [5]. This document 
describes the hardware of the end-effector, the associated sensors, and the 
control and simulation software developed for the end effector. 

This end-effector, a parallel jaw gripper, has proximity and crossfire 
sensors for the detection of workpieces, limit and overload sensors, and 
manually-exchangeable fingers. The Automation Technology Branch has 
researched several variations of this end-effector, including finger-mounted 
force/ torque sensors, automatically exchangeable ratcheting tools, and 
several task-specific gripper styles. 

A microprocessor controller has been developed for this end-effector, 
with a sophisticated monitor to examine and change gains, speeds, and 
sensor values, and to move the grippers. This controller has been interfaced 
into the Teleoperator and Robotic Testbed to provide automated gripping 
and gripper-based sensing to the TeleRobotic System Simulation (TRSS) 
currently in use in the ISRL. 

the end effector system in the Automation Technology Branch. The 
hardware of the system consists of a parallel jaw end-effector,proximity and 
force sensors, a signal conditioner subassembly, and a dual rack mountable 
controller. The system software consists of the controller program, a 
FORTRAN interface to the ISRL TRSS system, and a program that produces 
a graphical simulation of the end effector. 

This document describes the hardware and software developed for 

2 



4, P 

END-EFFECTOR HARDWARE 
This section describes the end-effector hardware. Figure 1 

shows the end-effector mounted on a PUMA manipulator. A sketch 
of the end-effector is shown below in Figure 2. 

Figure 1. PUMA manipulator and end-effector 

A. Mechanical Details 
The body of the end-effector houses a DC torque motor. From the 

motor’s shaft, a nylon gear drives an incremental shaft encoder and a DC 
tachometer, which provides position and rate feedback information respec- 
tively. A worm gear on the motor shaft drives two opposing sector gears 
having linkage arms. Three combinations of worm to sector gear ratios 
have been tested: 25:1,50:1, and 100:l. The lower ratios lead to a low grip 
strength and move the jaws too rapidly. The 100:l provides increased grip 
strength and slower jaw movement, but after some gear wear, the gears jam 
occasionally. The worm gear ratio of 1OO: l  is being used currently. The 
tachometer and shaft encoder to the motor shaft gear ratios are both 2.78:l. 
Each linkage arm serves as one leg of a parallelogram that moves the jaw at 
right angles to the motor shaft while maintaining the jaw gripping surfaces 
parallel to each other. The mechanical details of the end-effector are labelled 
in Figure 2. 
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Figure 2. Components of the end-effector 

Servo Components 
The torque motor is an Inland Motors Model NT 2133 having a peak 

torque of 60 oz.-inches, and a maximum no-load speed of approximately 
640 RPM. 

revolution of its shaft, is geared to the motor shaft to provide position feed- 
back. Its two TTL compatible square wave outputs are input to the 
microprocessor. Because it is not an absolute ,encoder, a position detector 

An incremental shaft encoder, with an output rate of 250 pulses per 
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located in one of the finger support blocks is used to initialize the mi- 
croprocessor to zero reference position near the full open (limit) position. 
The limit detector consists of an infrared light emitting diode (LED) illumi- 
nating a phototransistor. The optical path between the LED and 
phototransistor is interrupted by a sector gear when the jaw position is 
within the normal operating range. An initialization subroutine in the mi- 
croprocessor causes the motor to drive to the limit position which is then 
defined as zero position. The limit sensor is similar to the overload sensor, 
which is described in the "Sensors" section. 

The tachometer is geared to the torque motor shaft using gears 
identical to those used for the encoder. Its DC output is summed with the 
position error signal and fed to the servo amplifier. The servo amplifier is 
an Inland Motors 100 watt unit with current programming resistors to limit 
output to a value safe for the motor. The amplifier is bolted to the frame of 
the controller card cage to maintain it at a safe operating temperature. 

The Controller 
The microprocessor on which the end-effector controller is based is 

the Intel 8051. In Intel terminology, the 8051 designator really stands for a 
family of microprocessors that includes the 8031, the 8051, and the 8751. The 
8751 microprocessor has 4K of on-chip EPROM, the 8051 processor has 4K of 
on-chip ROM preprogrammed by Intel, and the 8031 microprocessor has no 
on-chip ROM or EPROM [7,8]. Although both the 8751 and the 8031 micro- 
processors have been used with the system, the 8031 seems to work best 
because of its simplicity. 

The microprocessor controller uses two STD bus type printed circuit 
boards per end-effector. The STD bus was developed by Pro-Log and 
Mostek[4]. The circuit boards are located in a card cage (see the "Card Cage" 
section) whose front panel contains situation displays and manual controls 
for two independent systems. The 8031 microprocessor and its external 2716 
ROM are on the CPU board, with all remaining components except the 
power amplifier on the second board. A 14-pin DIP header on each board 
allows signals to go from the CPU to the power board. This arrangement 
precludes the necessity for reassigning any pins on the CPU STD bus to other 
functions that may conflict with future use of other STD bus components. 
Pins for the power board have been assigned as needed and the boards keyed 
to prevent insertion into slots wired according to STD bus configuration. 

The "A" output of the shaft encoder, and its inverse, are wired to the 
8031's two interrupt pins. This ensures that both transitions (from "1" to "0" 
and "0" to "1") interrupt the processor, so that rotation of the encoder in ei- 
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ther direction can be noted. The state of the ”B” encoder output at time of 
transition is ascertained by the interrupt routine and used to increment or 
decrement the position register in the 8031 as described in the software 
section of this report. Differences between the contents of the position 
register and other values are computed in accordance with input commands 
and the resulting error signal transmitted via the eight-bit bus to a D/A 
converter. The DC error signal is then summed with the rate signal from 
the tachometer and applied to the input terminals of the servo power 
amplifier. The 8031’s internal circuits provide two-way serial 
communication with a terminal or a host computer. The serial ports are 
converted to RS-232 by circuits on the CPU board. 

Sensors 
The parallel jaw end-effector has provisions for several types of 

sensors in addition to the wrist mounted six-degree-of-freedom force sensor 
purchased for this laboratory. The eight channels of proximity sensing and a 
workpiece detector, or ”crossfire” detector, are located in the fingertips. Each 
channel of the proximity sensor system consists of two infrared light 
emitting diodes and a phototransistor. As shown in Figure 3, the LED’s 
illuminate an area extending a few inches from the surface of the finger. 
Depending upon the surface and distance, the object may be detected by the 
phototransistor located between the LEDs, as it receives energy reflected 
from a nearby object. The crossfire detector uses an LED in one finger and a 
phototransistor in the other looking across the opening in the fingers. 
These are binary sensors with no provisions for obtaining range data. 

corresponding phototransistor sampled by circuitry in the signal conditioner 
unit under control of the microprocessor. Pulsing the LEDs allows higher 
current levels by reducing average current and improves efficiency by 
reducing the operating temperature. 

located in one of the finger support blocks. A similar sensor in the base, the 
”overload” sensor, detects relative motion between the motor housing and 
the base. The overload sensor output may be used with appropriate 
software or hardware to disengage the system when excessive forces are 
applied to the end-effector. A torque of zero to 30 in.lbs. will trip the 
overload sensor, depending on the settings of the preload adjustment 
springs. These two sensors operate in continuous mode using an LED- 
phototransistor pair looking across a short distance. 

All proximity and crossfire LEDs are consecutively pulsed and the 

A ”limit” sensor, described in the ’Servo Components” section, is 
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Proximity Sensor Tests 

maximum range for several reflecting surfaces. The testing was done using 
the orientation described in the following paragraphs. 

With the tachometer in the front (facing observer), the limit sensor is 
in the base of the left-hand jaw (designated 1) (see Figure 2). The right-hand 
jaw is designated 2, and the base is designated 3. A right-hand Cartesian 
coordinate system is then defined with the +Z-axis along the outward 
direction upward from the base (also known as the "approach" direction), 
the +Y-axis extends between the jaws toward the right jaw (called the . 
"orientation" direction), and the +X-axis is defined by X = Y x Z (called the 
"normal" direction)[3]. The orientation Ya is at an angle of 60' from the Y 
axis of the end-effector. 

detector is located in the tip of the left jaw, and its emitter is located in the 
tip of the right jaw. 

orientation as defined by the direction of the light emitting diode: 

Tests of the proximity sensors were performed to determine 

The overload sensor is located in the base. The crossfire sensor's 

The proximity sensors are located on each jaw tip with the following 

On Jaw 1 (left jaw) 
+Z,  +X, -X, -Ya 

On Jaw 2 (right jaw) 
+ Z ,  +X, -X, +Ya 

To describe the locations of the sensors, the following convention 
will be used. Each sensor will be identified by a three or four alphanumeric 
symbol (with a minus sign) constructed as follows: 

Variable sensed codes Location of sensor codes Direction codes 
P = proximity 1 = left jaw X 
L = limit 2 = right jaw Y 
C = crossfire 3 = base Z 
0 = overload 
F = force + 
M = moment - 
D = moment arm 
Consequently, the eleven sensors involving LED-emitters and detec- 

tors are designated as follows: 

Ya = atan angle to Y-axis 
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The Card Cage 
The card cage front panel is hinged to provide access to the wire 

wrapped connectors for modifications and future expansion of the system. 
Presently, two separate parallel jaw end-effector systems are installed in the 
card cage. Each system has its own display and control on the front panel. 
Future possible additions would be an interface/display for the vacuum 
end-effector now used in the lab or an A/D converter module for the strain 
gauge signals. 

provide for: 
There are three switches on the front panel of the card cage, which 

resetting the CPU, 

The motor ON/OFF switch is in series with the control winding and 
is after the front panel motor voltmeter. This convenience allows the 
operator to monitor the servo output voltage before applying power to the 
motor. The jog switch is a manual rate command that changes the 
microprocessor's commanded position. Therefore, after using the jog switch 
to change the jaw opening, a disagreement will exist between the actual 
opening and opening last received from the host computer. That error will 
self correct when the next position command is input. 

the optical sensors. The proximity sensor LEDs are arranged pictorially on 
the front panel as they would appear to an observer looking back toward the 
end-effector from a workpiece. Figure 4 diagrams how the card cage appears 
for one end-effector. 

interrupting current to the motor, and 
manually controlling jaw position (jogging). 

The card cage display consists of a red LED corresponding to each of 

Figure 4. The front panel card cage for one end-effector 
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THE 8031 CONTROLLER SOFTWARE 
This section discusses the structure of the 8031 program from a 

general, high-level point of view. 

8031 program functions. 
A program controlling the parallel jaw end-effector must perform 

several actions: 
Keep a record of the current jaw opening. 
Move the jaws, when needed. 
Record, on a regular basis, the status of the proximity, crossfire, 
overload, and limit sensors. 
Respond to the user's requests for jaw movement or jaw status 
information. 

The opening of the parallel jaws is correlated to encoder counts of the 
shaft encoder driven by the worm screw motor through the external inter- 
rupts 0 and 1 as described in the previous section. The handlers for these 
two interrupts maintain a record of the current encoder counts. 

manded position or a manual "jog request" from the jog switch to open or 
close the jaws a small amount. 

In a move to a commanded position, the controller program 
continually checks the actual encoder value against the target value and 
applies the corrective drive current to bring the actual encoder value to the 
target value. In a jog request, the controller program briefly applies a 
current to drive the jaws in the direction requested. 

feature allows the user to use any set of end-effectors as the millimeter jaw 
gap to encoder count jaw gap ratio will be determined dynamically at system 
startup. 

Another feature allows the user to change the speed of the jaw motor. 
The rate can be altered to any of 128 settings by changing the speed 
parameter. By changing the speed, however, the motor torque, and 
consequently jaw gripping force is also changed. 

The status of the proximity, crossfire, and limit detectors is 
continually monitored by the controller program and stored in on-chip 
RAM. This is the information displayed on the front panel LED's. 

level of this interaction was described in the part of the previous section 

Jaw movement can occur in either of two ways, a move to a com- 

An extra feature available for the user is jaw self-calibration. This 

Interaction with the user occurs through the serial port. The lower 
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dealing with the serial port and the associated serial interrupts. The 
controller program must perform the conversion from the character-level 
interaction with the user down to the binary level at which the controller 
program must operate. The controller program must also determine from 
the character input supplied from the user what the user wants and respond 
accordingly. 

must do several things simultaneously, which is impossible, of course, since 
like most people, a single processor can only do one thing at a time. This 
apparent concurrency is accomplished by having the processor switch 
rapidly from one task to another so that all of the tasks appear to progress 
steadily to their completion. 

From the above discussion, it appears that the controller program 

The 8031 Operating System. 
A few words about the 8031 operating system are necessary in order to 

understand the 8031 controller program. The interleaving of task execution 
is the responsibility of the operating system kernel. It is implemented by use 
of one of the clock/timers as an autoload timer to generate a periodic clock 
interrupt. The handler for this interrupt maintains a "ready queue", a list of 
subroutines waiting to execute. Each subroutine in the list has an associated 
"schedule variable", which holds the number of clock interrupts to occur 
before the subroutine executes. When the clock interrupt occurs and control 
passes to the interrupt handler, the interrupt handler checks through the 
ready queue and decrements the schedule variable of each subroutine on the 
queue. Any subroutine whose schedule variable is zero is removed from 
the ready queue and made ready to execute. On termination of the handler, 
the subroutine removed from the ready queue executes to completion, with 
occasional pauses due to interrupts. 

To say that this process is repeated each time a clock interrupt occurs 
is a slight oversimplification. The clock interrupt handler only checks the 
ready queue on a fraction of the times that the clock interrupt occurs. This 
slows the rate of checking the ready queue to a point that fits the time 
dynamics of the gripper hardware. Currently, the clock interrupt handler 
checks the ready queue every fourth clock interrupt - three clock interrupts 
out of four, the handler simply returns with no action. The frequency with 
which the clock interrupt handler checks the ready queue can be varied 
interactively by the user. The value for the clock interrupt handler 
frequency that the program uses is stored in a location of the on-chip RAM 
that can be modified by the user with the interactive monitor. 



The frequency with which the clock interrupt handler checks the 
ready queue does not affect the system. Its behavior is essentially the same 
whether the clock interrupt value is at the minimum value of 01 (check the 
ready queue at every clock interrupt) or its maximum value of FF (check the 
ready queue only once out of every 255 clock interrupts). The explanation 
for this fact is that the clock interrupt frequency determines the ”absolute 
frequency” of events in the controller system in relation to real time and not 
the order of the events or their “relative frequency”. Even at the largest 
value for the period of the clock interrupt timer, the system events occur 
rapidly enough in relation to real time not to cause a problem. It is possible 
that if a 16-bit value were used instead of an 8-bit value to keep track of the 
period of the clock interrupt handler, the frequency of system events could 
be slowed to the point of adversely affecting system behavior. 

Process Scheduling 
The ”schedule” subroutine of the operating system kernel places a 

subroutine on the ready queue and sets the schedule variable of the 
subroutine to the desired initial value. The subroutines in the parallel jaw 
controller that must perform a task repeatedly are written as “self- 
scheduling” routines. One of the last statements of such a subroutine would 
be to schedule itself into the ready queue to re-execute at some future time. 
This self-scheduling causes the subroutine to be invoked periodically. The 
self-scheduling occurs toward the end of the subroutine to avoid having two 
copies of the subroutine executing at the same time. At system 
initialization, the main program schedules all self-scheduling subroutines 
to get them started. 

The 8031 program uses three self-scheduling subroutines. The 
”sensor” subroutine continually reads the proximity, crossfire, and limit 
sensors and displays the information by turning on the appropriate 
indicators on the front panel of the controller cage. The ”jaw movement” 
routine continually checks to see whether the jaws must be moved, and if 
so, moves the jaws. The subroutine first checks to see if the jog switch is 
active and drives the jaws accordingly. If the jog switch is not active, the 
subroutine drives the jaws to zero the difference between the commanded 
position and the current position. The ”jaw watching” subroutine 
continually compares the present jaw position with the previous jaw 
position, sets a %topped” bit flag if the two positions are the same, and then 
calculates the error between the target position and the present position. 

varied interactively. The schedule values for the self-scheduling 
The schedule frequencies of the self-scheduling subroutines can be 
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subroutines are taken from locations in the on-chip RAM; they not hard- 
coded into the object file. As a result, the user can vary these values using 
the interactive monitor described in the “Interactive Monitor” section. 

This feature gives the user the flexibility to determine the optimal 
sizes of the scheduling intervals. This feature was necessary because the 
controller program did not perform correctly with the values initially 
chosen. Furthermore, without the ability to vary the values interactively, it 
was very difficult to determine what the values should be. This feature has 
been invaluable in getting the controller program to work as it was 
designed. 

variable is critical for proper behavior of the system. This routine should 
execute as frequently as possible. When the ”jaw watching” schedule 
variable is large, the ”stopped” bit does not accurately describe the state of 
the jaws because the bit can be ON even though the jaws are actually 
moving, and the error value between the targeted and actual positions is not 
valid. 

of the jaws. The jaws have previously been at rest, so the “stopped” bit is 
ON. If the ”jaw watching” schedule variable is large, then as the jaws are 
driven open to their widest position, the ”stopped” bit remains ON even 
though the jaws are moving, because the “jaw watching” routine, which 
would change the ”stopped” bit, is waiting on the ready queue for its 
schedule variable to reach zero. The checks built into the initialization 
routine sense from the ”stopped” bit that the jaws are stopped, even though 
they are actually moving, and abort the initialization prematurely. 

The scheduling frequency of the ”jaw watching’’ subroutine is also 
important because this subroutine computes the error between the target 
and actual positions. If the value of the schedule variable of the ”jaw 
watching” subroutine is significantly larger (80 hexadecimal) than the value 
of the schedule variable of the ”jaw movement” subroutine (OC 
hexadecimal), then the value of the error between the target and actual 
positions used by the ”jaw movement” subroutine to drive the jaws is not 
accurate, which leads to oscillation of the jaws around the target jaw posi- 
tion when a jaw movement command is given. This also dictates that the 
”jaw watching” subroutine should execute as frequently as possible (with a 
self-scheduling variable of 01 hexadecimal). 

Tests have shown that the value of the “jaw watching” schedule 

The accuracy of the ”stopped“ bit is most crucial during initialization 
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The Command Interface of the Controller Program 
The controller program outputs a ”CMD: ” prompt, after which the 

C initialize the end-effector, then determine and display 
the range of encoder counts from the wide open to fully 
closed jaw positions 
display error between target and actual positions 
initialize the end-effector and its data structures 

move to a commanded position 

display encoder counts of target position 
display encoder counts of current position 
change speed of jaw movement 

user may enter any of the following commands: 

E 
I 
M enter the interactive monitor 
P 
S display current sensor values 
T 
W 
X 
A more extensive description of the commands and the format of the 

response of the controller is given in Appendix A. 

The Interactive Monitor 
As part of the implementation of the 8031 chip, an interactive 

monitor was developed. The monitor has proven quite useful during the 
implementation and subsequent modifications to the 8031 program. The 
information provided by the interactive monitor is invaluable in 
determining root causes for irregular or hard-to-explain program behavior. 

The monitor allows the user to toggle the clock/timer interrupt 
on/off. By disabling the clock/timer interrupts, the user can look at the 
ready queue or test the sensor LED’s without effecting the ready queue. If 
the clock/ timer interrupt was not suspended, each monitor command 
would effect the ready queue as the ready queue is being changed by the 
clock/ timer interrupt handler as it is being inspected. 

the monitor, the user can test each sensor LED individually. The command, 
as entered by the user, actually stores a hexadecimal value between 0 and 255 
in each of the two sensor bytes. It is quite useful for testing the correctness of 
the sensor LED’s with the memory addresses. 

The monitor allows the user to display and/or change the contents of 
an on-chip RAM location address to the value specified by the user. This fa- 
cility allows the user ease-of-debugging when installing a new version of the 
8031 program. The user can actually look at memory and see where the 

Testing the sensor LEDs  is another facility of the monitor. By using 
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contents differ from what was expected. In order to display the current 
contents of the stack pointer, SP, a special command needed to be created. 
This command needed to be implemented separately since the display 
location command uses an assembler instruction which can only access 255 
memory locations, and the stack pointer‘s address was not among these 
addresses. 

Appendix B contains a detailed listing of the monitor commands. 

The ISRL parallel jaw end-effector must be able to store its data in a 
END-EFFECTOR INTERFACE WITH RTCOMMON. 

way that is communicable with the rest of TRSS (TeleRobotic System 
Simulation), the robotics system at ISRL. The TRSS system currently 
operates two Unimate PUMA arms with a planned expansion in the near 
future. The system uses a FORTRAN ”COMMON” block data structure 
named RTCOMMON (RealTime COMMON block) to communicate 
information with the rest of the system. The general format of this 
COMMON block and the end effector data stored in the COMMON block are 
discussed in later sections. 

INTERFACE and IEEECOM . These programs are discussed in the next two 
sections. 

The two main programs which use RTCOMMON are OPERATOR 

RTCOMMON’s relationship to the VAX 11/750 
The RTCOMMON data structure resides in a special portion of mem- 

ory on a VAX 11/750 called “shared common memory”. The shared 
memory location on the VAX is a permanent portion of the memory of the 
VAX specifically set aside for RTCOMMON. The memory is set aside so that 
the multiple processes that run concurrently when the TRSS system is up 
have a quick means by which to communicate. This scheme provides the 
fastest way for multiple processes to communicate with each other, and acts 
as a “global” COMMON block. Any process executing on the VAX may link 
to the RTCOMMON memory area and modify the contents of the fields in 
RTCOMMON. Although this open environment can be dangerous, the re- 
searchers in the ISRL environment co-operate with each other to prevent 
”false modification” problems. 

OPERATOR INTERFACE and RTCOMMON 
The person running the system sends commands through a high 

level interface called OPERATOR INTERFACE. This command interface is 
completely documented elsewhere [ll. The commands that are relevant to 
end-effector control will be summarized briefly here. 
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One command that the operator can issue from OPERATOR INTER- 
FACE is ‘%AI?, which specifies the gap size in millimeters. Because of the 
large number of different jaw types that can be used with the end-effector, 
this jaw gap is measured from the ”heel” of the jaw mounting fitting (see 
Figure 5 below). 

ored ored jaw 

Figure 5. Measurement of jaw gap 
This command allows the user to open or close the end-effector to a 

desired position for object manipulation. The desired position is stored in 
the RTCOMMON data structure, where it will be detected by IEECOM. 
Whenever the gap command is issued, the user must also issue a “WAIT 
TIME 0.5” command. This wait sequence gives the end-effector time to 
move to whatever the new position is. 

Another operator command is the ”SENSORS” command. The sen- 
sors command toggles the collection and storage of end-effector sensor 
information in the RTCOMMON data structure. Included among the 
toggled sensor information is ”proximity” information which detects the 
presence of a nearby object, ‘krossfire” information which detects the 
presence of an object between the end-effector jaws, “base-overload” 
information which detects excessive forces between the motor housing and 
base, and ’limit information”, which detects the maximum opening of the 
end-effector. 

The third operator command is “INITIALIZE. This command 
returns the end-effector to its state of initialization, which includes moving 
the end-effectors to their maximum open position. A boolean field in 
RTCOMMON is updated with this information and the end-effector is 
subsequently initialized. ”INITIALIZE” can also be used to release a grasped 
object. 
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Additionally, the user may specify a file which acts as a "script" of ac- 
tions. OPERATOR INTERFACE will perform the script actions sequentially. 

IEECOM and RTCOMMON 
IEEECOM (IEEE COMmunications) provides communication 

capability between the OPERATOR INTERFACE program and the various 
peripheral actuator devices in the TRSS. The IEEECOM process loops con- 
tinuously, looking for changes in control variables in the RTCOMMON 
block made by one of the routines in the OPERATOR INTERFACE program 
requesting an action from one of the peripheral devices in the system. 
When such a change occurs, the proper subroutine of IEEECOM is invoked 
to perform the communication with the peripheral device necessary to 
accomplish the desired action. 

The general format of RTCOMMON 
In the TRSS, the user can move the end-effector by using either the 

"INITIALIZE" or "GAP" commands in the OPERATOR INTERFACE pro- 
gram. The initialize command moves the end-effector to the "open" posi- 
tion. The gap command specifies an absolute opening, in millimeters, for 
the jaw to open to. The "SENSOR" command in OPERATOR INTERFACE 
toggles the collection of sensor information in the RTCOMMON data 
structure each time through the main event loop in the IEEECOM program. 
This command does not present the user with sensor data directly. To 
obtain this information, the user must access the part of the RTCOMMON 
data structure relating to the end-effector in the FORTRAN source code that 
the user writes. 

RTCOMMON contains a data structure to describe each manipulator. 
The data structure contains entries for the output mode, the control mode, a 
power-on indicator, the geometric data for the arm, and records for the con- 
trol station information, the vision system, the force-torque sensor, the end- 
effector, the joint velocities, the resolved-rate inputs, and the homogeneous 
transform. The exact FORTRAN code for the RTCOMMON data structure is 
shown in its entirety in Appendix C. The next section describes the part of 
the RTCOMMON structure having to do with the end-effectors. 

End-effector Data stored in RTCOMMON 
The data stored in RTCOMMON for each end-effector (the 

"pjg-end-effector" structure) includes: 
a flag to initialize the parallel jaw data ("initialize"). 
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a flag to nullify the drive voltage sent to the motor 
("null-motor"). 
the current opening of the jaw in encoder counts ("jawsap"). 
the error between the current jaw opening and the desired posi- 
tion ("error-gap"). 
the desired jaw position ("targetsap") 
the current rate at which the end-effector will move ("speed"). 
a sensor data record ("sensor-data"). 
a ratchet data record ("ratchet-data"). 

a "desired" boolean which is set to true when the user wants 
sensor information. 
two 32-bit integer fields which store, bit-by-bit, whether the prox- 
imity, crossfire, overload, or proximity sensors are on or off 
("xfire-ovl-lim" contains the first three sensors and 
"proximity" contains the rest). The bit assignments for these two 
words are as follows: 

0 

0 

The sensor data record consists of: 

bit # proximity word xfire-ovl-lim word 
0 Left jaw, +Ya Crossfire 
1 Left jaw, +Z Overload 
2 Left jaw, +X Limit 
3 Left jaw, -X Unused 
2 Left jaw, +X Limit 
3 Left jaw, -X Unused 
4 Right jaw, -Ya Unused 
5 Right jaw, +Z Unused 
6 Right jaw, +X Unused 
7 Right jaw, -X Unused 

8-31 unused Unused 
The ratchet record contains: 

a boolean which is set to true if the user wishes to use the ratchet 
("desired"). 
the gap at which the ratcheting is centered ("centersap"). 
the total number of degrees which the ratchet is to sweep 
("sweep-degrees"). 
the rate at which the ratcheting is to be done ("rate"). 
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The actual FORTRAN declaration of the RTCOMMON data structure 
is contained in Appendix C. 

CONCURRENT SIMULATION OF A PARALLEL JAW END-EFFECTOR. 
This section describes a system of programs developed to provide a 

graphical simulation of the parallel jaw end-effector which executes concur- 
rently with the program controlling the end-effector. The simulation 
system generates a graphical image of the end-effector that moves in 
approximately real time in response to commands issued by the controlling 
program. The commands that the simulation system accepts are identical to 
the commands the actual end-effector accepts. A sketch of the 
representation of the end-effector on the VSl l  graphics terminal is shown 
below in Figure 6.  

Figure 6. The graphics display of the end-effector simulator 
This system provides the user with an environment that can be used 

to develop the command /response protocols needed for the end-effector 
without the necessity of scheduling usage of the end-effector and the 
manipulator to which it is mounted. In addition, the simulation system can 
be used when the actual hardware, the end-effector, the manipulator, or the 
OPERATOR INTERFACE of the TRSS system, are inoperative. 

The simulation system has been tested with a LISP program using the 
command format of the DAISIE robotics control system [2], developed in the 
Intelligent Systems Research Laboratory. 

Structure of the Simulation System 
The simulation system is composed of three main parts: 

the controlling LISP program 
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a collection of FORTRAN subroutines imported by the LISP pro- 
gram to initiate execution of, and then to communicate with, the 
third part of the system. 
the FORTRAN program for the overall control of the 
communications and graphics subroutines which produce the 
simulation of the end-effector. 

To begin a simulation session, the user must load the file of LISP 
control functions into LISP and initiate the master function at the top level. 
This function begins an initialization sequence that imports the necessary 
FORTRAN subroutines into the LISP environment. 

simulation. This subroutine initializes the graphics display, the interprocess 
mailboxes, and event flag clusters, and then creates, as a separate process, the 
FORTRAN program that generates the graphics and simulates the end- 
effector. Two mailboxes are created, one for commands sent from the 
controlling LISP program to the simulation program and the other for 
responses going the other way. Because VMS has a “wait-for offspring” rule, 
this initialization subroutine executes to completion, but cannot terminate 
until the process that it created, the end-effector simulation process, 
terminates. This ensures that the event flag cluster and the mailboxes that it 
creates continue to exist. Creating ”permanent” mailboxes is another 
alternative, but the method chosen requires less privilege from VMS. At 
termination of the initialization subroutine, control returns to the calling 
LISP program, unlocking the keyboard and allowing additional LISP 
functions to be invoked. 

The command and response information exchanged by the LISP con- 
trolling program and the actual end-effector has the format of a five 
character field accompanied by a six-vector of real numbers. Each device in 
the DAISIE system communicates using this same command /response 
format: this is one of the strengths of the design of the system. The character 
field gives the source and destination of the command or response, as well 
as the basic command or response. The six-vector of real numbers contains 
modifying information. For example, in the case of the move command, 
this information would include the type of move (ratchet, positional, etc.), 
and the end condition desired, along with any necessary parameters, such as 
rate gains, desired jaw gap or maximum jaw force at termination. In the 
case of a response to a status request, the six-vector contains the current and 
target jaw gaps, position and rate gains, and information from proximity 
and cross-fire detectors located on the end-effector. 

One of these imported FORTRAN subroutines is called to start the 
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As a convenience to the user, each of the commands sent to the end- 
effector simulator is embodied as a LISP function. This relieves the user of 
the burden of real-time parenthesis matching and of having to memorize 
the exact command formats and the encoding of their fields. Each of these 
LISP functions transforms its command into the DAISIE format and 
invokes one of the imported FORTRAN subroutines to place the command 
message into the command mailbox and set an associated event flag. The 
process simulating the end-effector is waiting on this event flag. When the 
flag is set, the process retrieves the command from the mailbox and acts on 
it. 

The move and initialize commands are enqueued by the simulation 
program for subsequent action, whereas the quit, status request and debug 
commands receive an immediate reply. Commands involving movement 
of the end-effector are enqueued because, in general, they require a longer 
time to complete than a status request. With this program structure, it is 
possible for the LISP driver program to issue a sequence of move commands 
and then to monitor their progress through a series of status requests. 

When a command has been completed, the simulation process sends 
a reply to the LISP program by placing an appropriately formatted message 
in the reply mailbox and setting the associated event flag. At present, the 
simulation program assumes that all commands complete successfully, 
although random failure reports could be easily introduced into the 
simulation program in the future. 

structure, but was added to be able to obtain debugging information during 
the development of the simulation system. With it, the user can toggle the 
display of four different types of debugging information, event flag 
behavior, interprocess communication, end-effector control, and graphics 
information. 

The debug command is not really a part of the DAISIE command 

Advantages of the simulation system 

both the data structures and the calling structures used in the simulation are 
the same as the data structures used in the TRSS. This feature of the 
simulation facilitates the integration testing of new features to the TRSS, 
since no translation of data structures or subroutine calling structures is 
necessary. Additionally, the simulation allows accurate testing of programs 
without tying up the end-effector and manipulator which are scarce 
resources. 

Perhaps the most important feature of the simulation system is that 
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Details of Usage 
To start the simulation, the user must load the LISP functions driving 

the simulation of the end-effector into the LISP interpreter. Then the user 
must type 

to initialize the simulation and graphic software. The user is then presented 
with the prompt: 

The explanation of these commands is given help screen, displayed in re- 
sponse to the "h" command: 

Enter  d h(e1p)  i m n q s x 

PARALLEL JAW GRIPPER SIMULATOR ======= -------- -------- 
L i s t  of Commands 

d togg le  t h e  d i s p l a y  of debug information 
h d i s p l a y  t h i s  screen 
i reset g r ippe r  t o  i n i t i a l  condi t ion  
m send a move command t o  t h e  g r i p p e r  
n n u l l  command (no-op) 
q r e t u r n  t o  L I S P  i n t e r p r e t e r  
S send a s t a t u s  request  t o  t h e  g r i p p e r  
X e x i t  t o  VMS command l e v e l  

The most of the commands shown either correspond closely to the 
commands of the OPERATOR INTERFACE program described in the 
previous section are self-explanatory. When the user issues the "m" 
command, the graphical simulation of the end-effector moves in 
approximate real time to the commanded position. 

TOOLS FOR THE PARALLEL JAW END-EFFECTOR 
Several tools have been designed and fabricated for use with the 

parallel jaw end-effector, along with several replaceable sets of jaws. The 
tools have been designed to pennit quick-change by programmed action of 
the manipulator arm and end-effector, while the jaws are typically changed 
manually on a task basis. 

Quick-Change 

lock the tool onto the square shaft of the tool pickup. After use, the tool can 
be returned to the rack by rotating the holder to a particular orientation such 
that inclined planes on the rack open the spring-loaded arms, thus 
permitting the pickup shaft to be withdrawn from the tool and another tool 
selected. By rounding the end of the square shaft and building some 

The tool quick-change uses a pair of spring-loaded retaining arms to 
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compliance into the base of the tool rack, accuracy requirements for control 
of the arm’s position were reduced to levels that could be handled either by 
a human operator or by off-line programming. 

Ratchets 
The most useful of the tools has been the quarter-inch tool driver. 

One version uses motion of robot wrist to rotate the tool, in which case a 
ratchet is necessary because of the limited available angular rotation of the 
robot wrist. Sensors in the end-effector jaws or on the robot wrist have been 
used to control torques applied to the workpiece. 

A version of the ratchet was 
designed to make use of the end- 
effector’s internal motor to turn 
rotary tools. The ratchet was 
necessary in this case because the 
mechanism controlling end- 
effector jaw opening remained 
coupled to the motor. Thus, motor 
rotation over more than part of a 
turn would cause large changes in 
jaw opening beyond that required 
for contact with the ratchet body 
and proper operation of the 
ratchet’s direction reversing lever. 
This version was fabricated and 
assembled and although it 
appeared to function as planned, 
appropriate software was not 
generated to evaluate the device 
fully. A sketch of the end-effector 
with the ratchet mounted is shown 
in Figure 7. 

Alternate Fingers 

Figure 7. Ratchet tool 

The parallel jaw end-effector has worked well for ordinary operations. 
However, when assembling a lattice-like structure such as the proposed 
space station, the end-effectors had a problem with holding onto the pipe. 
This ”slippage” problem displayed the need for another end-effector tool to 
be created: an end-effector with alternate fingers. In designing the alternate 
fingers, it was found that the rounded surface of the casing holding the 
rounded alternate finger structure created more surface area for the 
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' 1 Parallel Jaw End-Effector 7/6/88 ' >  

manipulator to touch the object being gripped. This added surface area 
contact aided in preventing slippage. 

leftmost and third fingers were designed with the goal of handling 
cylindrical objects easily. The second finger contains the finger force and 
proximity sensors. The rightmost finger was designed for a small-radius 
handle specific to a space station application. 

Figure 8 shows alternate fingers developed for the end effector. The 

cylindrical 
gripper 1 

q 
sensored 

jaw 

cylindrical 
gripper 2 

E 
small column 

gripper 

Figure 8. Alternate fingers developed for end-effector 

Other Tools 
Wirecutters, forceps and pli- 

ers have also been designed and 
fabricated for the end-effector. 
These tools were designed to be op- 
erated by the sensored fingers of the 
end-effector fitting into the open- 
ings at the base of each tool. These 
tools have not been fully 
evaluated. A sketch of the pliers is 
shown in Figure9. 

Figure 9. End-effector pliers 
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' ' Parallel Jaw End-Effector 7/6/88 

CONCLUSIONS 
The parallel jaw end-effector system described here represents the 

effort of a number of people over a period of several years. The system is 
versatile, reliable, easily modifiable, and offers diverse functionality. In 
addition to the purposes for which it was designed, the software of the 
system provides the user with a wide variety of debugging capabilities. The 
end-effector system provides indispensible gripping and gripper-based 
sensing to the Telerobotic System Simulation research currently being 
conducted in the Intelligent Systems Research Laboratory by the personnel 
of the Automation and Technology Branch. 
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Appendix A 
8031 Controller Commands 

The values entered and returned from all controller commands are 
in hexadecimal, with the single exception of the current state of the sensors 
returned by the “S” command in binary. 

C 

E 

I 

M 

Controller Commands 
Display the range of encoder counts from the wide open to the fully 
closed positions. This command initializes the gripper as in the ”I” 
command below, closes the jaws until they stop, displays the corre- 
sponding encoder count value, and re-initializes the gripper. The 
value displayed is slightly more than the actual total range of encoder 
counts because of looseness in the jaw linkage and compliance of the 
material used in the jaw surfaces. If either initialization of the gripper 
fails, control passes to the interactive monitor (see the ”M” command 
below). 
Display error between target and actual positions. The error value is 
kept in excess-128. Since the error value is shown in hexadecimal, a 
value of ”0080” corresponds to zero error, a value of “008F” corre- 
sponds to an error of 15 (the actual position is 15 encoder counts more 
than the target value), and a value of “007A” corresponds to an error 
of -6. The error value is always equal to the actual position (the 
value displayed by the Wl” command) minus the target position (the 
value displayed by the ”T” command). 
Initialize the gripper and its data structures. This command 
initializes the gripper by initializing the on-chip RAM location 
dealing with encoder counts and then driving the jaws to the wide- 
open position. The wide-open position of the jaws is sensed by the 
limit sensor. The current value of this sensor is stored in the ’limit” 
bit. If the initialization procedure notices that the jaws have stopped 
(the ”stopped” bit is on) before the “limit” bit comes on, the 
initialization is aborted with an error message, and control is passed 
to the interactive monitor so that the user can determine the cause of 
the initialization failure (see the ’M” command below). 
This command enters the interactive monitor. The command line 
prompt changes from TMD: ” to ”* ”. The following commands are 
accepted: 

Monitor 

C 
D 

Command Description 
change contents of a location in on-chip RAM 
display contents of a location in on-chip RAM 
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Appendix A 
8031 Controller Commands 

I toggle clock/ timer interrupts 
L 
N 
Q 
S 

test sensor LEDs on card cage front panel 
display contents of next location in on-chip RAM 
quit the monitor and return to main command level 
display contents of SI?, the stack pointer 

Any other characters are ignored. Appendix B contains more detailed 
description of the monitor commands. 
Move to a commanded position. This command accepts a target en- 
coder value from the user, stores it in the on-chip RAM, and sets the 
“drive’’ bit so that the “jaw movement” routine will start driving the 
worm screw motor to zero the difference between the current encoder 
value and the target value. 

Encoder counts range from ”0000” when the jaws are wide 
open to the value of approximately ”D600” when the jaws are closed. 
Encoder counts are always non-positive and are represented in two’s 
complement notation. Consequently, a value of “D600” really stands 
for the two’s complement negative of ”3A00”. Therefore, the com- 
mands ’TE47A” and ‘T-lB86” have the same effect, since ”E47A” is 
the two’s complement representation of the negative of ”1B86”. Ei- 
ther form of the command will be accepted by the command inter- 
preter. 

A comment is needed about use of the ’T command. The 
’T” command has been improved in this version of the program. 
With the two’s complement convention used for the number of 
encoder counts, any positive number of encoder counts can never be 
achieved. In the old program, supplying a positive target would cause 
the jaws to be driven closed and the position encoder counts would 
become increasingly negative. This resulted in an unrecoverable 
error situation since the encoder counts could never become positive. 
The new program rejects a positive encoder target as an invalid 
command. 
Display current sensor values. This command displays the current 
sensor values as a 16-bit binary string. These values are stored in 
locations 2E and 2F of the on-chip RAM. The leftmost eight bits of 
the binary string are the bits of location 2F and the rightmost eight bits 
are the bits of location 2E. The bits have the following meanings (bit 
15 is the leftmost bit and bit 0 is the rightmost bit): 
Bit Position LED Location 

P 

S 

15..11 unused - bit might be either 0 or 1 
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8031 Controller Commands 

10 limit 
9 overload 
8 crossfire 
7 right jaw, -X 
6 right jaw, +X 
5 right jaw, +Z 
4 right jaw, -Ya 
3 left jaw, -X 
2 left jaw, +X 
1 left jaw, +Z 
0 left jaw, +Ya 
The bit in the sensor bit string is ”0” if and only if the corre- 

sponding sensor is ON. For example, if, in response to the ”S” 
command, the user receives the bit string: 

1111101101101101 
then this would indicate that the following detectors are on 
(proceeding from left to right): 

crossfire (leftmost 0) 
right jaw, -X 

left jaw, +Z (rightmost 0) 
T Display target position. This command shows the last commanded 

position in encoder counts. When the jog switch is used to open or 
close the jaws, the target position is kept equal to the actual position, 
so that the jaws will not be moved back to the previously targeted 
position by the ”jaw movement’’ subroutine. 
Display current position. This command shows the encoder counts 
corresponding to the current jaw opening. 

W 

X With this command, the user can change the speed at which the jaws 
open and close. When a combination of worm and sector gears is 
used in an end-effector with a significantly higher gear ratio than the 
ratio used in the original design, the maximum speed of the worm 
drive motor has to be reduced because the jaws move too rapidly. 
With the original worm/sector combination, a speed value of ”7F” is 
used, but with the newer high-ratio worm/sector combination, a 
speed of ”33” seems to move the jaws at approximately the same 
speed as the original gearing. 
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Appendix B 
8031 Controller Monitor Commands 

The commands accepted by the interactive monitor of the 8031 controller 
are listed below. All other character input is ignored. 
C addr value 

Change the contents of on-chip RAM location "addr" (0 5 addr 5 7F) 
to "value". The address and new value stored at the address are 
displayed after the storage takes place. 

Display the contents of on-chip RAM location "addr" (0 I addr I 7F). 

Toggle the clock/timer interrupt on or off. This command is needed 
to be able to look at the ready queue or test the sensor LEDs. Disabling 
the clock/timer interrupt suspends all changes to the ready queue so 
that the user can use the " D  monitor command to inspect the ready 
queue and the associated schedule variables. If the clock/timer 
interrupt is not disabled, then use of the " D  command to inspect the 
ready queue leads to confusing results, since the ready queue is being 
changed by the clock/timer interrupt handler as it is being inspected. 

Test sensor LEDs. This command allows the user to test each sensor 
LED individually. The full word (two-byte) "bit-pattern" is stored at 
the two on-chip RAM locations used to store the sensor information. 
The proximity sensor bits are stored at location 2D and the crossfire, 
overload, and limit bits are stored at location 2E. This command 
stores the full word bit pattern entered by the user at  locations 2D and 
2E and then displays the contents of location 2D. The action of 
displaying the contents of the location just stored was added to make 
sure that the intended value for the sensor LEDs was actually being 
stored at locations 2D and 2E. The following example of use of this 
command may be helpful. In the interaction shown below, the typing 
done by the user is underlined. 

D addr 

I 

L bit-pattern 

*I 
*LFBFE 2DFE 
*N 2E FB 

The user has stored the bit pattern "FBFE" (in hexadecimal) or "1111 
1011 1111 1110" (in binary) in the sensor bytes of the on-chip RAM. 
The I command was necessary to suspend the clock/timer interrupts, 
so that the self-scheduling "sensor" subroutine will not replace the 
values entered with the current sensor values. The value "FE" is 
stored at location 2D and the value "FB" is stored at the location 2E 
(the low order byte is stored at the lower address and the high order 
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8031 Controller Monitor Commands 

byte is stored at the higher address). The "FE" of the pattern turns on 
the crossfire LED, and the "FB" turns on the LED corresponding to the 
+X detector on the right jaw (see the main command level "S" 
command for a description of the locations of the sensor bits). The 
LED is ON if and only if the corresponding bit is zero. You will notice 
that, as a side-effect of the command, the contents of location 2D are 
displayed. If, as the user has done here, you want to see the contents 
of the next byte (the next sensor byte containing the limit, overload, 
and crossfire bits), you can use the monitor "N" command to display 
the contents of the byte at location 2E. The following bit patterns can 
be used to test each LED on the front panel of the controller cage: 

Bit Pattern LED Location 
FF7F -X, left jaw 
FFBF +X, left jaw 
FFDF +Z, left jaw 
FFEF -Ya, left jaw 
FFF7 -X, right jaw 
FFFB +X, right jaw 
FFFD +Z, right jaw 
FFFE +Ya, right jaw 
FBFF limit 
FDFF overload 
FEFF crossfire 
F800 all LEDs ON 
0000 all LEDs ON 
FFFF all LEDs OW 
07FF all LEDs OFF 

N 
Display the next memory address and its contents. The address dis- 
played is the address next to the most recently referenced address by 
the "C" or "D' commands. When the monitor is entered, the default 
memory address is set to the current value of the stack pointer, SP. 

Quit the monitor and return to the main command loop. 

Display the current contents of the stack pointer, SP. Even though the 
stack pointer is kept at location 81 in the on-chip RAM, the 
"D" command cannot be used to display its value. The " D  command 
is implemented using the MOV instruction with register-indirect ad- 
dressing, and the 8031 chip restricts the range of this instruction to the 

Q 

S 
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values between 00 and 7F. The stack pointer cannot be accessed by the 
"D" instruction since its address is outside of this range. 
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Appendix C 
RTCOMMON Data Structure 

C 
c % % % % %  RTCOMMON.DEF 

C 
C 
C DATA STRUCTURE 
C 
C DEFINE ALL DATA TYPES 
C 

% % % % %  

STRUCTURE 
UNION 
MAP 
REAL 

ENDMAP 
MAP 
REAL 

ENDMAP 
ENDUNION 

ENDSTRUCTURE 

STRUCTURE 
UNION 
MAP 
REAL 

ENDMAP 
MAP 
REAL 

ENDMAP 
ENDUNION 

ENDSTRUCTURE 

STRUCTURE 
UNION 
MAP 
REAL 
REAL 

ENDMAP 
MAP 
REAL 
REAL 

ENDMAP 
MAP 
RECORD 
RECORD 

ENDMAP 
MAP 
REAL 

ENDMAP 
ENDUNION 

ENDSTRUCTURE 

STRUCTURE 
UNION 

-- R e a l t i m e  d a t a  s t r u c t u r e s  

FOR INLAB DUAL PUMA SIMULATION 

/LOCATION/ 

LOCATION (3) 

/ORIENTATION/ 

RX, RY, RZ 

ORIENTATION (3) 

/EULER-VECTOR/ 

x, y, 
Rx, RY, RZ 

/LOCATION/ TRANSLATION 
/ORIENTATION/ ROTAT ION 
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MAP 
REAL N-VECTOR ( 4 ) 
REAL S-VECTOR ( 4 ) 
REAL A VECTOR(4) 
REAL PIVECTOR ( 4 

ENDMAP 
MAP 
REAL 

REAL AX, AY, AZ, AW 

NX, NY, NZ , NW 
REAL sx, SY, sz, sw 
REAL PX, PY, PZ, PW 

ENDMAP 
MAP 

ENDMAP 
REAL HTRAN (4,4) 

ENDUNION 
ENDSTRUCTURE 

STRUCTURE /JOINT/ 
UNION 
MAP 
REAL JNTl 

2 , JNT2 
3 , JNT3 
4 , JNT4 
5 , JNT5 
6 , JNT6 
7 , JNT7 

ENDMAP 
MAP 

ENDMAP 
ENDUN ION 

ENDSTRUCTURE 

REAL JNT(7) 

STRUCTURE /VELOCITY VECTOR/ 
RECORD /EULER-VECTOR~ VEL 
ENDSTRUCTURE 

STRUCTURE /ACCELERATION-VECTOR/ 
RECORD /EULER-VECTOR/ ACCEL 
ENDSTRUCTURE 

STRUCTURE /JERK-VECTOR/ 
RECORD /EULER-VECTOR/ JERK 
ENDSTRUCTURE 
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STRUCTURE /DATA-VECTOR/ 
RECORD /EULER-VECTOR/ DATA 
ENDSTRUCTURE 

STRUCTURE /GAIN_VECTOR/ 
RECORD /EULER-VECTOR/ GAIN 
ENDSTRUCTURE 

STRUCTURE / COMMAND_VECTOR/ 
RECORD /EULER-VECTOR/ COM 
ENDSTRUCTURE 

STRUCTURE /~-BUFFER/ 
UNION 
MAP 

ENDMAP 
MAP 

ENDMAP 
MAP 

ENDMAP 
MAP 

ENDMAP 
ENDUNION 

ENDSTRUCTURE 

BYTE BYTE-BUFFER( 64) 

INTEGER"2 12-BUFFER (32)  

INTEGER"4 14-BUFFER (16) 

REAL* 4 R4 - BUFFER ( 16) 

STRUCTURE / ARM-DATA/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 
RECORD /JOINT/ 

RECORD /COMMAND-VECTOR/ 
RECORD /LOCATION/ 
RECORD /ORIENTATION/ 

RECORD /JOINT/ 

ENDS TRUCTURE 

ANGLE 
VELOCITY 
TORQUE 
COM-ANGLE 
COM_VELOCITY 
COM-TORQUE 
RESET-ANGLE 
OFFSET 
MOTOR-CURRENT 
POSITION 
TRANS-DUMMY 

EULER 

C *** NOTE NEED TO CHANGE EULER TO EULER VECTOR, NOT CHANGE NOW, SO 
NOT 

- 
C TO DESTORY 
C THE STRUCTURE OF RTCOMMON. *** 

STRUCTURE /CONTROL-STATION/ 
RECORD /JOINT/ JOINT-BY-JOINT 
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REAL ATTITUDE ( 3 )  
1 , TRANSLATION ( 3 )  
3 , SIX-DOF-CTRLR (6) 
4 ,GAIN 
ENDSTRUCTURE 

STRUCTURE /VISION-DATA/ 
RECORD /DATA-VECTOR/ RAW 

LOGICAL 
RECORD /DATA VECTOR/ PROCESSED 

ACQU I s IT ION 

2 ,SWITCH_CONTROL 
1 , VISION CONTROL 
ENDSTRUCTURE 

STRUCTURE /HOMO-TRANS/ 
RECORD /HOMO TRAN-MATRIX/ 

RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO TRAN MATRIX/ 

RECORD /HOMO;TRAN-MATRIX/ 

RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMOITRANIMATRIX/ 
RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO TRAN-MATRIX/ 
RECORD /HOMOTRAN-MATRIX/ 
RECORD /HOMOTRAN-MATRIX/ 
RECORD /HOMOITRAN MATRIX/ 
RECORD /HOMO-TRAN~MATRIX/ 

RECORD / HOMOTRAN-MATRI X/ 

RECORD /HOMO-TRAN~MATRIX/ 

RECORD /HOMO-TRAN-MATRIX/ 
RECORD /HOMO TRAN-MATRIX/ 

RECORD /HOMO-TRAN MATRIX/ 

RECORD /HOMO-TFWN-MATRIX/ 
RECORD /HOMO - TRAN - MATRIX/ 

ENDSTRUCTURE 

CRF-TO WORLD 

MRF-TO-WORLD 
WORLD-TO-MRF 
BASE-TO-WORLD 
WORLD-TO-BASE 
MRF TO-CRF 

WRIST-TO-BASE 
BASE-TO-WRIST 
MRF-TO WRIST 

TARGET TO-LENS 
LENS TO TARGET 

WRIST-TO-LENS 
DEFAULT 
WRIST-TO-ANGLE 
ANGLE-TO-WRIST 
DEFAULT-EXT 
WRIST-TO-FS 
FS-TO-WRIST 

WORLD-TO-CRF 

CRF~TO-MRF 

WRI s TTOMRF 

LENS~TO~WRIST 

STRUCTURE /VELS/ 
RECORD /VELOCITY-VECTOR/ WRIST 
RECORD /VELOCITY-VECTOR/ BOD 

RECORD /VELOCITY-VECTOR/ MRF 
RECORD /VELOCITY-VECTOR/ KBRATE-BOD 

RECORD /VELOCITY-VECTOR/ CRF 

RECORD /JOINT/ VEL 
ENDSTRUCTURE 

STRUCTURE /EXTERNALS/ 
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RECORD /VELOCITY-VECTOR/ HND 
RECORD /VELOCITY-VECTOR/ BOD 

ENDSTRUCTURE 

STRUCTURE /FINGER SENSOR/ 

ENDS TRUCTURE 
REAL STRAIN (8) 

STRUCTURE /FT-SENSOR/ 
LOGICAL ZERO-FORCE 
LOGICAL OVERLOAD 
LOGICAL HEALTH 
INTEGER*4 ERROR-STATUS 
LOGICAL TONCE 
RECORD /DATA-VECTOR/ FORTORQ-IN 
RECORD /DATA-VECTOR/ FORTORQ-OUT 
RECORD /COMMAND-VECTOR/ FORTORQ 
RECORD /GAIN-VECTOR/ KP 

ENDSTRUCTURE 

STRUCTURE /RESOLVED RATE-INPUTS/ 
RECORD /VELOCITY-VEC%R/ EXTERNAL 
RECORD /EULER-VECTOR/ VISION 
RECORD /EULER-VECTOR/ FINGER 
RECORD /EULER-VECTOR/ WRIST 

ENDSTRUCTURE 

S T RUC TURE /OBJECT-DATA/ 
RECORD /EULER-VECTOR/ mg-in-world 
RECORD /EULER-VECTOR/ cg-in-wrist 

ENDSTRUCTURE 

C Data Structures for a parallel-jaw end-effector 
C 

STRUCTURE /sensor-data/ 
LOGICAL*l desired ! .TRUE. --> user wants sensor info 
INTEGER*4 xfire-ovl-lim ! crossfire, overload, limit sensors 
INTEGER"4 proximity ! proximity sensors 

END STRUCTURE ! sensor-data 
C 
C bit encoding for sensor information: (bit 0 <--> 2**0) 
C z-axis is parallel to axis of joint 6 of the manipulator 
C y-axis is perpendicular to the jaw faces, directed toward right jaw 
C x-axis is such that xyz form a right-handed coordinate reference 
frame 
C bit # proximity word xfire-ovl-lim word 

c o  
c 1  
c 2  

Left jaw, +Ya Crossfire 
Left jaw, +Z Overload 
Left jaw, +X Limit 
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C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

3 
4 
5 
6 
I 
8-31 

Left jaw, -X Unused 
Right jaw, -Ya Unused 
Right jaw, +Z Unused 
Right jaw, +X Unused 
Right jaw, -X Unused 
unused unused 

STRUCTURE /ratchet-data/ 
LOGICAL*l desired ! .TRUE. --> user wants ratcheting 
REAL*4 center-gap ! ratcheting centered at this gap (mm) 
REAL*4 sweep-degrees ! total # degrees of ratchet sweep 
REAL*4 rate ! speed of ratchet movement 

END STRUCTURE ! ratchet-data 

STRUCTURE /pjg-end-effector/ 
LOGICAL"1 initialize 
LOGICAL*1 null-motor 

REAL * 4 
REAL * 4 target-gap 

REAL * 4 jaw-gap 
err o r-gap 

C A change in the rrjaw-gap" value implies a commanded move 
C to the given value. 

c Speed contains the speed that the jaw is currently set to (via 'X') 
INTEGER*2 speed 

RECORD /sensor-data/ sensors 
RECORD /ratchet-data/ ratchet 

END STRUCTURE 

C 
c Create all variables 
C 

STRUCTURE /MANIPULATOR/ 

INTEGER"4 MODE-OUT 
l=reset,2=hold,3=operate 

! CYBER control . 

INTEGER*4 CTRL MODE 
LOGICAL*l DC-P=RON 

RECORD 
RECORD 
RECORD 
RECORD 
RECORD 
RECORD 
RECORD 
RECORD 
RECORD 
RECORD 

/--DATA/ ARM 
/OBJECT-DATA/ OBJECT 
/CONTROL-STATION/ MANUAL 
/VISION-DATA/ VISION 
/FT-SENSOR/ WRIST 
/FINGER SENSOR/ FINGER 
/ P JG-EN~-EFFECTOR/ GRIPPER 
/VELS / RESOLVED 
/EXTERNALS/ EXTERNAL 
/RESOLVED-RATE-INPUTS/ FLY 
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RECORD /HOMO-TRANS/ TRANSFORM 
ENDSTRUCTURE 

RECORD /MANIPULATOR/ PUMA(2) 

RECORD /P-BUFFER/ PUMA-BUFFER 

RECORD /EULER-VECTOR/ ZERO 

RECORD /HOMO-TRAN-MATRIX/ IDENTITY 

C Future cleanup project 

RECORD /DATA-VECTOR/ GRAVITY-COMPED 
integer DISPLAY-FORMAT 

c Put all required variable in common 
C 
c BYTE FILLER ( 3  958 ) 

ARM SEL !Selected arm - INTEGER 

COMMON 
1 
1 
3 
4 
4 
5 
6 
7 
8 
9 
1 
1 
1 
1 
1 

c 4  

/RTCOMMON/ 
ZERO 
, IDENTITY 
, PUMA 
, DBUFFER 
,PUMA BUFFER 
, arm-zel 
, am-camera 
, camera-sel 
, f rame-out 
,t 
, delt 
, csystem 
, rtS-status 
,gravity-comped 
, DISPLAY-FORMAT 
,FILLER 
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